Tangent $2$-fields on even-dimensional nonorientable manifolds
نویسندگان
چکیده
منابع مشابه
Coincidence Classes in Nonorientable Manifolds
In this article we studied Nielsen coincidence theory for maps between manifolds of same dimension without hypotheses on orientation. We use the definition of semi-index of a class, we review the definition of defective classes and study the appearance of defective root classes. We proof a semi-index product formula type for lifting maps and we presented conditions such that defective coinciden...
متن کاملManifolds with an Su(2)-action on the Tangent Bundle
We study manifolds arising as spaces of sections of complex manifolds fibering over CP 1 with the normal bundle of each section isomorphic to O(k)⊗ Cn. Any hypercomplex manifold can be constructed as a space of sections of a complex manifold Z fibering over CP . The normal bundle of each section must be the sum of O(1)’s, and this suggests that interesting geometric structures can be obtained i...
متن کاملLagrange Geometry on Tangent Manifolds
Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family...
متن کاملSecond Order Tangent Bundles of Infinite Dimensional Manifolds
The second order tangent bundle T M of a smooth manifold M consists of the equivalent classes of curves on M that agree up to their acceleration. It is known [1] that in the case of a finite n-dimensional manifold M , T M becomes a vector bundle over M if and only if M is endowed with a linear connection. Here we extend this result to M modeled on an arbitrarily chosen Banach space and more gen...
متن کاملManifolds with Multiplication on the Tangent Sheaf
This talk reviews the current state of the theory of F–(super)manifolds (M, ◦), first defined in [HeMa] and further developed in [He], [Ma2], [Me1]. Here ◦ is an OM–bilinear multiplication on the tangent sheaf TM , satisfying an integrability condition. F–manifolds and compatible flat structures on them furnish a useful weakening of Dubrovin’s Frobenius structure which naturally arises in the q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1982
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1982-0648087-9